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Introduction

Introduction

Most DHT supporting P2P systems distribute objects (data)
randomly among nodes

Some nodes have Θ(log N) imbalance

Other factors resulting in imbalance
I non-uniform distribution of objects in ID space

I heterogeneity in object loads

I node capacities

I variability of a node’s load with time
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Introduction

Introduction

This paper proposes the first algorithm for dynamic load
balancing in heterogenous, structured P2P systems

I data items inserted/deleted continuously

I nodes join/depart continuously

Conducts extensive simulations to show its validity
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Preliminaries

Definitions

Load: Represents the needed storage space, popularity,
needed processor time etc. of the object

Movement Cost: Cost associated with moving an object
between nodes

Capacity: Each node has a fixed capacity for e.g. disk space,
processor speed, bandwidth etc.

Node Utilization: Total load divided by capacity for a node

System Utilization: Total load across nodes divided by total
capacity of all nodes
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Preliminaries

Goals

Minimizing the load imbalance across nodes

Minimizing the amount of load moved between nodes
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Background

Virtual Servers

Most DHTs map a region of the ID space to a node

Unique IDs are attached to the object and the responsible node
in the same ID space

With virtual servers, this mapping is done on virtual servers
instead of node

A node now has multiple virtual servers and hence IDs

No need to change underlying DHT with joining/departing of
nodes (advantage)
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Background

Static Load Balancing Techniques

One-to-one scheme: lightly loaded node periodically contacts a
node at random

One-to-many scheme: a heavy node contacts a directory node
which is contacted by random light nodes

Many-to-many scheme: each directory maintains load
information of a set of heavy & light nodes
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Load Balancing Algorithm

Node

When a node n’s utilization un = !n/cn jumps above a
parameterized emergency threshold ke, it immediately reports
to the directory d which it last contacted, without waiting for d’s
next periodic balance. The directory then schedules immediate
transfers from n to more lightly loaded nodes.

More precisely, each node n runs the following algorithm.

Node(time period T , threshold ke)
• Initialization: Send (cn, {!v1

, . . . , !vm
}) to Ran-

domDirectory()
• Emergency action: When un jumps above ke:

1) Repeat up to twice while un > ke:
2) d ← RandomDirectory()
3) Send (cn, {!v1

, . . ., !vm
}) to d

4) PerformTransfer(v, n′) for each transfer
v → n′ scheduled by d

• Periodic action: Upon receipt of list of transfers from
a directory:

1) PerformTransfer(v, n′) for each transfer
v → n′

2) Report (cn, {!v1
, . . ., !vm

}) to RandomDirec-
tory()

In the above pseudocode, RandomDirectory() selects
two random directories and returns the one to which fewer
nodes have reported since its last periodic balance. This reduces
the imbalance in number of nodes reporting to directories.
PerformTransfer(v, n′) transfers virtual server v to node
n′ if it would not overload n′, i.e. if !n′ + !v ≤ cn′ . Thus a
transfer may be aborted if the directory scheduled a transfer
based on outdated information (see below).

Each directory runs the following algorithm.

Directory(time period T , thresholds ke, kp)
• Initialization: I ← {}
• Information receipt and emergency balancing: Upon

receipt of J = (cn, {!v1
, . . . , !vm

}) from node n:
1) I ← I ∪ J
2) If un > ke:
3) reassignment ← ReassignVS(I, ke)
4) Schedule transfers according to reassignment

• Periodic balancing: Every T seconds:
1) reassignment ← ReassignVS(I, kp)
2) Schedule transfers according to reassignment
3) I ← {}

The subroutine ReassignVS, given a threshold k and
the load information I reported to a directory, computes a
reassignment of virtual servers from nodes with utilization
greater than k to those with utilization less than k. Since
computing an optimal such reassignment (e.g. one which min-
imizes maximum node utilization) is NP-complete, we use a
simple greedy algorithm to find an approximate solution. The

algorithm runs in O(m log m) time, where m is the number of
virtual servers that have reported to the directory.

ReassignVS(Load & capacity information I , threshold k)
1) pool ← {}
2) For each node n ∈ I , while !n/cn > k, remove the

least loaded virtual server on n and move it to pool.
3) For each virtual server v ∈ pool, from heaviest to

lightest, assign v to the node n which minimizes
(!n + !v)/cn.

4) Return the virtual server reassignment.

We briefly discuss several important design issues.
Periodic vs. emergency balancing. We prefer to schedule

transfers in large periodic batches since this gives Reas-
signVS more flexibility, thus producing a better balance.
However, we do not have the luxury to wait when a node
is (about to be) overloaded. In these situations, we resort
to emergency load balancing. See Section V-A for a further
discussion of these issues.

Choice of parameters. We set the emergency balancing
threshold ke to 1 so that load will be moved off a node when
load increases above its capacity. We compute the periodic
threshold kp dynamically based on the average utilization µ̂ of
the nodes reporting to a directory, setting kp = (1+ µ̂)/2. Thus
directories do not all use the same value of kp. As the names
of the parameters suggest, we use the same time period T be-
tween nodes’ load information reports and directories’ periodic
balances. These parameters control the tradeoff between low
load movement and low quality of balance: intuitively, smaller
values of T , kp, and ke provide a better balance at the expense
of greater load movement.

Stale information. We do not attempt to synchronize the
times at which nodes report to directories with the times
at which directories perform periodic balancing. Indeed, in
our simulations, these times are all randomly aligned. Thus,
directories do not perform periodic balances at the same time,
and the information a directory uses to decide virtual server
reassignment may be up to T seconds old.

V. EVALUATION

We use extensive simulations to evaluate our load balancing
algorithm. We show

• the basic effect of our algorithm, and the necessity of
emergency action (Section V-A);

• the tradeoff between low load movement and a good
balance, for various system and algorithm parameters
(Section V-B);

• the number of virtual servers necessary at various system
utilizations (Section V-C);

• the effect of node capacity heterogeneity, concluding that
we can use many fewer virtual servers in a heterogeneous
system (Section V-D);

• the effect of nonuniform object arrival patterns, showing
that our algorithm is robust in this case (Section V-E);
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Load Balancing Algorithm

Directory

When a node n’s utilization un = !n/cn jumps above a
parameterized emergency threshold ke, it immediately reports
to the directory d which it last contacted, without waiting for d’s
next periodic balance. The directory then schedules immediate
transfers from n to more lightly loaded nodes.

More precisely, each node n runs the following algorithm.

Node(time period T , threshold ke)
• Initialization: Send (cn, {!v1

, . . . , !vm
}) to Ran-

domDirectory()
• Emergency action: When un jumps above ke:

1) Repeat up to twice while un > ke:
2) d ← RandomDirectory()
3) Send (cn, {!v1

, . . ., !vm
}) to d

4) PerformTransfer(v, n′) for each transfer
v → n′ scheduled by d

• Periodic action: Upon receipt of list of transfers from
a directory:

1) PerformTransfer(v, n′) for each transfer
v → n′

2) Report (cn, {!v1
, . . ., !vm

}) to RandomDirec-
tory()

In the above pseudocode, RandomDirectory() selects
two random directories and returns the one to which fewer
nodes have reported since its last periodic balance. This reduces
the imbalance in number of nodes reporting to directories.
PerformTransfer(v, n′) transfers virtual server v to node
n′ if it would not overload n′, i.e. if !n′ + !v ≤ cn′ . Thus a
transfer may be aborted if the directory scheduled a transfer
based on outdated information (see below).

Each directory runs the following algorithm.

Directory(time period T , thresholds ke, kp)
• Initialization: I ← {}
• Information receipt and emergency balancing: Upon

receipt of J = (cn, {!v1
, . . . , !vm

}) from node n:
1) I ← I ∪ J
2) If un > ke:
3) reassignment ← ReassignVS(I, ke)
4) Schedule transfers according to reassignment

• Periodic balancing: Every T seconds:
1) reassignment ← ReassignVS(I, kp)
2) Schedule transfers according to reassignment
3) I ← {}

The subroutine ReassignVS, given a threshold k and
the load information I reported to a directory, computes a
reassignment of virtual servers from nodes with utilization
greater than k to those with utilization less than k. Since
computing an optimal such reassignment (e.g. one which min-
imizes maximum node utilization) is NP-complete, we use a
simple greedy algorithm to find an approximate solution. The

algorithm runs in O(m log m) time, where m is the number of
virtual servers that have reported to the directory.

ReassignVS(Load & capacity information I , threshold k)
1) pool ← {}
2) For each node n ∈ I , while !n/cn > k, remove the

least loaded virtual server on n and move it to pool.
3) For each virtual server v ∈ pool, from heaviest to

lightest, assign v to the node n which minimizes
(!n + !v)/cn.

4) Return the virtual server reassignment.

We briefly discuss several important design issues.
Periodic vs. emergency balancing. We prefer to schedule

transfers in large periodic batches since this gives Reas-
signVS more flexibility, thus producing a better balance.
However, we do not have the luxury to wait when a node
is (about to be) overloaded. In these situations, we resort
to emergency load balancing. See Section V-A for a further
discussion of these issues.

Choice of parameters. We set the emergency balancing
threshold ke to 1 so that load will be moved off a node when
load increases above its capacity. We compute the periodic
threshold kp dynamically based on the average utilization µ̂ of
the nodes reporting to a directory, setting kp = (1+ µ̂)/2. Thus
directories do not all use the same value of kp. As the names
of the parameters suggest, we use the same time period T be-
tween nodes’ load information reports and directories’ periodic
balances. These parameters control the tradeoff between low
load movement and low quality of balance: intuitively, smaller
values of T , kp, and ke provide a better balance at the expense
of greater load movement.

Stale information. We do not attempt to synchronize the
times at which nodes report to directories with the times
at which directories perform periodic balancing. Indeed, in
our simulations, these times are all randomly aligned. Thus,
directories do not perform periodic balances at the same time,
and the information a directory uses to decide virtual server
reassignment may be up to T seconds old.

V. EVALUATION

We use extensive simulations to evaluate our load balancing
algorithm. We show

• the basic effect of our algorithm, and the necessity of
emergency action (Section V-A);

• the tradeoff between low load movement and a good
balance, for various system and algorithm parameters
(Section V-B);

• the number of virtual servers necessary at various system
utilizations (Section V-C);

• the effect of node capacity heterogeneity, concluding that
we can use many fewer virtual servers in a heterogeneous
system (Section V-D);

• the effect of nonuniform object arrival patterns, showing
that our algorithm is robust in this case (Section V-E);
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Load Balancing Algorithm

Reassignment of Virtual Servers

When a node n’s utilization un = !n/cn jumps above a
parameterized emergency threshold ke, it immediately reports
to the directory d which it last contacted, without waiting for d’s
next periodic balance. The directory then schedules immediate
transfers from n to more lightly loaded nodes.

More precisely, each node n runs the following algorithm.

Node(time period T , threshold ke)
• Initialization: Send (cn, {!v1

, . . . , !vm
}) to Ran-

domDirectory()
• Emergency action: When un jumps above ke:

1) Repeat up to twice while un > ke:
2) d ← RandomDirectory()
3) Send (cn, {!v1

, . . ., !vm
}) to d

4) PerformTransfer(v, n′) for each transfer
v → n′ scheduled by d

• Periodic action: Upon receipt of list of transfers from
a directory:

1) PerformTransfer(v, n′) for each transfer
v → n′

2) Report (cn, {!v1
, . . ., !vm

}) to RandomDirec-
tory()

In the above pseudocode, RandomDirectory() selects
two random directories and returns the one to which fewer
nodes have reported since its last periodic balance. This reduces
the imbalance in number of nodes reporting to directories.
PerformTransfer(v, n′) transfers virtual server v to node
n′ if it would not overload n′, i.e. if !n′ + !v ≤ cn′ . Thus a
transfer may be aborted if the directory scheduled a transfer
based on outdated information (see below).

Each directory runs the following algorithm.

Directory(time period T , thresholds ke, kp)
• Initialization: I ← {}
• Information receipt and emergency balancing: Upon

receipt of J = (cn, {!v1
, . . . , !vm

}) from node n:
1) I ← I ∪ J
2) If un > ke:
3) reassignment ← ReassignVS(I, ke)
4) Schedule transfers according to reassignment

• Periodic balancing: Every T seconds:
1) reassignment ← ReassignVS(I, kp)
2) Schedule transfers according to reassignment
3) I ← {}

The subroutine ReassignVS, given a threshold k and
the load information I reported to a directory, computes a
reassignment of virtual servers from nodes with utilization
greater than k to those with utilization less than k. Since
computing an optimal such reassignment (e.g. one which min-
imizes maximum node utilization) is NP-complete, we use a
simple greedy algorithm to find an approximate solution. The

algorithm runs in O(m log m) time, where m is the number of
virtual servers that have reported to the directory.

ReassignVS(Load & capacity information I , threshold k)
1) pool ← {}
2) For each node n ∈ I , while !n/cn > k, remove the

least loaded virtual server on n and move it to pool.
3) For each virtual server v ∈ pool, from heaviest to

lightest, assign v to the node n which minimizes
(!n + !v)/cn.

4) Return the virtual server reassignment.

We briefly discuss several important design issues.
Periodic vs. emergency balancing. We prefer to schedule

transfers in large periodic batches since this gives Reas-
signVS more flexibility, thus producing a better balance.
However, we do not have the luxury to wait when a node
is (about to be) overloaded. In these situations, we resort
to emergency load balancing. See Section V-A for a further
discussion of these issues.

Choice of parameters. We set the emergency balancing
threshold ke to 1 so that load will be moved off a node when
load increases above its capacity. We compute the periodic
threshold kp dynamically based on the average utilization µ̂ of
the nodes reporting to a directory, setting kp = (1+ µ̂)/2. Thus
directories do not all use the same value of kp. As the names
of the parameters suggest, we use the same time period T be-
tween nodes’ load information reports and directories’ periodic
balances. These parameters control the tradeoff between low
load movement and low quality of balance: intuitively, smaller
values of T , kp, and ke provide a better balance at the expense
of greater load movement.

Stale information. We do not attempt to synchronize the
times at which nodes report to directories with the times
at which directories perform periodic balancing. Indeed, in
our simulations, these times are all randomly aligned. Thus,
directories do not perform periodic balances at the same time,
and the information a directory uses to decide virtual server
reassignment may be up to T seconds old.

V. EVALUATION

We use extensive simulations to evaluate our load balancing
algorithm. We show

• the basic effect of our algorithm, and the necessity of
emergency action (Section V-A);

• the tradeoff between low load movement and a good
balance, for various system and algorithm parameters
(Section V-B);

• the number of virtual servers necessary at various system
utilizations (Section V-C);

• the effect of node capacity heterogeneity, concluding that
we can use many fewer virtual servers in a heterogeneous
system (Section V-D);

• the effect of nonuniform object arrival patterns, showing
that our algorithm is robust in this case (Section V-E);
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Load Balancing Algorithm

Some Design Issues

Periodic vs. emergency balancing: large T is preferred but
emergency situations are taken care of

Choice of parameters: threshold ke is set to 1 and kp is set to
(1 + µ̂)/2

Stale information: ‘node reporting times’ across directories is
not synchronized
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Empirical Evaluation

Metrics

Load Movement Factor: total movement cost due to load
balancing divided by the total most of moving all objects in the
system once

99.9th percentile node utilization: maximum over all simulated
times t of the 99.9th percentile of node utilizations at time t
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Empirical Evaluation

Basic Effect of Load Balancing

• the effect of node arrival and departure, concluding that
our load balancer never moves more than 60% as much
load as the underlying DHT moves due to node arrivals
and departures (Section V-F); and

• the effect of object movement cost being unrelated to
object load, with the conclusion that this variation has little
effect on our algorithm (Section V-G).

Metrics. We evaluate our algorithm using two primary
metrics:

1) Load movement factor, defined as the total movement cost
incurred due to load balancing divided by the total cost
of moving all objects in the system once. Note that since
the DHT must move each object once to initially insert it,
a load movement factor of 0.1 implies that the balancer
consumes 10% as much bandwidth as is required to insert
the objects in the first place.

2) 99.9th percentile node utilization, defined as the maxi-
mum over all simulated times t of the 99.9th percentile
of the utilizations of the nodes at time t. Recall from
Section II that the utilization of node i is its load divided
by its capacity: ui = !i/ci.

The challenge is to achieve the best possible tradeoffs
between these two conflicting metrics.

Simulation methodology. Table I lists the parameters of our
event-based simulated environment and of our algorithm, and
the values to which we set them unless otherwise specified.

We run each trial of the simulation for 20T simulated
seconds, where T is the parameterized load balance period.
To allow the system to stabilize, we measure 99.9th percentile
node utilization and load movement factor only over the time
period [10T, 20T ]. In particular, in calculating the latter metric,
we do not count the movement cost of objects that enter the
system, or objects that the load balancer moves, before time
10T . Finally, each data point in our plots represents the average
of these two measurements over 5 trials.

A. Basic effect of load balancing

Figure 1 captures the tradeoff between load movement
and 99.9th percentile node utilization. Each point on the
lower line corresponds to the effects of our algorithm with
a particular choice of load balance period T . For this and
in subsequent plots wherein we vary T , we use T ∈
{60, 120, 180, 240, 300, 600, 1200}. The intuitive trend is that
as T decreases (moving from left to right along the line), 99.9th
percentile node utilization decreases but load movement factor
increases. One has the flexibility of choosing T to compromise
between these two metrics in the way which is most appropriate
for the target application.

The upper line of Figure 1 shows the effect of our algorithm
with emergency load balancing turned off. Without emergency
balancing, for almost all nodes’ loads to stay below some
threshold, we must use a very small load balancing period
T so that it is unlikely that a node’s load rises significantly
between periodic balances. This causes the algorithm to move
significantly more load, and demonstrates the desirability of
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Fig. 1. 99.9th percentile node utilization vs. load moved, for our
periodic+emergency algorithm and for only periodic action.

emergency load balancing. In the simulations of the rest of this
paper, emergency balancing is enabled as in the description of
our algorithm in Section IV.

B. Load movement vs. 99.9th percentile node utilization

With a basic understanding of the tradeoff between our two
metrics demonstrated in the previous section, we now explore
the effect of various environment and system parameters on this
tradeoff.

In Figure 2, each line corresponds to a particular system
utilization, and as in Figure 1, each point represents a particular
choice of T between 60 and 1200 seconds. Even for system
utilizations as high as 0.9, we are able to keep 99.9 percent of
the nodes underloaded while incurring a load movement factor
of less than 0.08.

Figure 3 shows that the tradeoff between our two metrics
gets worse when the system contains fewer objects of com-
mensurately higher load, so that the total system utilization
is constant. Nevertheless, for at least 250, 000 objects, which
corresponds to just 61 objects per node, we achieve good load
balance with a load movement factor of less than 0.11.4 Note
that for 100, 000 objects, the 99.9th percentile node utilization
extends beyond the range of the plot, to less than 2.6. However,
only a few nodes are overloaded: the 99.5th percentile node
utilization for 100, 000 objects (not shown) stays below 1.0
with a load movement factor of 0.22. In any case, we believe
that our default choice of 1 million objects is reasonable.

Figure 4 shows that the number of directories in the system
has only a small effect on our metrics. For a particular load
movement factor, our default choice of 16 directories produces
a 99.9th percentile node utilization less than 3% higher than in
the fully centralized case of 1 directory.

C. Number of virtual servers

Figures 5 and 6 plot our two metrics as functions of system
utilization. Each line corresponds to a different average (over

4The spike above utilization 1 in the 500, 000-object line is due to
a single outlier among our 5 trials.
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Empirical Evaluation

Load Movement vs. 99.9th Percentile Node Utilization

TABLE I
SIMULATED ENVIRONMENT AND ALGORITHM PARAMETERS.

Environment Parameter Default value
System utilization 0.8
Object arrival rate Poisson with mean inter-arrival time 0.01 sec

Object arrival location Uniform over ID space
Object lifetime Computed from arrival rate and number of objects

Average number of objects 1 million
Object load Pareto: shape 2, scale 0.5a

Object movement cost Equal to object load
Number of nodes Fixed at 4096 (no arrivals or departures)

Node capacity Clipped Paretob: shape 2, scale 100

Algorithm Parameter Default value
Periodic load balance interval T 60 seconds

Emergency threshold ke 1
Periodic threshold kp (1 + µ̂)/2c

Number of virtual servers per node 12
Number of directories 16

aRescaled to obtain the specified system utilization.
bWe discard samples outside the range [10, 5000].
cµ̂ is the average utilization of the nodes reporting to a particular directory.
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Fig. 2. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
system utilizations.

all nodes) number of virtual servers per node.
We make two points. First, our algorithm achieves a good

load balance in terms of system utilization. In particular, the
99.9th percentile node utilization increases roughly linearly
with system utilization. Second, while an increased number of
virtual servers does help load balance at fairly high system
utilizations, its beneficial effect is most pronounced on load
movement.

D. Heterogeneous node capacities

Assume a system with equal capacity nodes, and let m be
the number of virtual servers per node. If m is a constant
independent of the number of nodes in the system, N , the
maximum node utilization is Θ(log N) with high probability
(w.h.p.) even when all objects have the same size and their
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Fig. 3. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
numbers of objects in the system.

IDs are uniformly distributed. To avoid this problem, we can
choose m = Θ(log N) as suggested in [2], reducing the max
node utilization to Θ(1) w.h.p. The price to pay is a factor
m increase in the routing state a node needs to maintain, as
discussed in Section III.

Somewhat surprisingly, we can achieve good load balancing
with many fewer virtual servers per node when node capacities
are heterogeneous than when they are homogeneous. Intuitively,
this is because the virtual servers with very high load can
be handled by the nodes with large capacities. Figures 7
and 8 illustrate this point. Figure 7 uses equal capacity nodes
(a departure from our default) and shows growth in 99.9th
percentile node utilization roughly linear in log N for a constant
number of virtual servers per node. In contrast, Figure 8 uses
our default Pareto node capacity distribution and shows a

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004
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Empirical Evaluation

Load Movement vs. 99.9th Percentile Node Utilization

TABLE I
SIMULATED ENVIRONMENT AND ALGORITHM PARAMETERS.

Environment Parameter Default value
System utilization 0.8
Object arrival rate Poisson with mean inter-arrival time 0.01 sec

Object arrival location Uniform over ID space
Object lifetime Computed from arrival rate and number of objects

Average number of objects 1 million
Object load Pareto: shape 2, scale 0.5a

Object movement cost Equal to object load
Number of nodes Fixed at 4096 (no arrivals or departures)

Node capacity Clipped Paretob: shape 2, scale 100

Algorithm Parameter Default value
Periodic load balance interval T 60 seconds

Emergency threshold ke 1
Periodic threshold kp (1 + µ̂)/2c

Number of virtual servers per node 12
Number of directories 16

aRescaled to obtain the specified system utilization.
bWe discard samples outside the range [10, 5000].
cµ̂ is the average utilization of the nodes reporting to a particular directory.
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Fig. 2. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
system utilizations.

all nodes) number of virtual servers per node.
We make two points. First, our algorithm achieves a good

load balance in terms of system utilization. In particular, the
99.9th percentile node utilization increases roughly linearly
with system utilization. Second, while an increased number of
virtual servers does help load balance at fairly high system
utilizations, its beneficial effect is most pronounced on load
movement.

D. Heterogeneous node capacities

Assume a system with equal capacity nodes, and let m be
the number of virtual servers per node. If m is a constant
independent of the number of nodes in the system, N , the
maximum node utilization is Θ(log N) with high probability
(w.h.p.) even when all objects have the same size and their
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Fig. 3. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
numbers of objects in the system.

IDs are uniformly distributed. To avoid this problem, we can
choose m = Θ(log N) as suggested in [2], reducing the max
node utilization to Θ(1) w.h.p. The price to pay is a factor
m increase in the routing state a node needs to maintain, as
discussed in Section III.

Somewhat surprisingly, we can achieve good load balancing
with many fewer virtual servers per node when node capacities
are heterogeneous than when they are homogeneous. Intuitively,
this is because the virtual servers with very high load can
be handled by the nodes with large capacities. Figures 7
and 8 illustrate this point. Figure 7 uses equal capacity nodes
(a departure from our default) and shows growth in 99.9th
percentile node utilization roughly linear in log N for a constant
number of virtual servers per node. In contrast, Figure 8 uses
our default Pareto node capacity distribution and shows a
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Load Movement vs. 99.9th Percentile Node Utilization
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Fig. 4. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
numbers of directories.
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Fig. 5. 99.9th percentile node utilization vs. system utilization for
various numbers of virtual servers per node.

marked decrease in 99.9th percentile node utilization, as well as
a less pronounced increase in 99.9th percentile node utilization
as N grows.

E. Nonuniform object arrival patterns

In this section we consider nonuniform arrival patterns, in
both time and ID space.

We consider an “impulse” of objects whose IDs are dis-
tributed over a contiguous interval of the ID space, and whose
aggregate load represents 10% of the total load in the system.
We vary the spread of the interval between 10% and 100% of
the ID space. Thus, an impulse spread over 10% of the ID space
essentially produces a rapid doubling of load on that region of
the ID space, and hence a doubling of load on roughly 10% of
the virtual servers (but not on 10% of the nodes since nodes
have multiple virtual servers). The objects all arrive fast enough
that periodic load balancing does not have a chance to run, but
slow enough that emergency load balancing may be invoked for
each arriving object. These impulses not only create unequal
loading of objects in the ID space but also increase the overall
system utilization in the short term.
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Fig. 6. Load movement factor vs. system utilization for various
numbers of virtual servers per node.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  100  1000  10000

99
.9

th
 P

er
ce

nt
ile

 N
od

e 
U

til
iz

at
io

n

Number of nodes in the system

Num VS = 2
= 4
= 8

= 12

Fig. 7. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with homogeneous node
capacities.

Assuming the system state is such that our load balancer will
be able to make all nodes underloaded, the 99.9th percentile
node utilization will simply be slightly below 1.0, since this
is the level of utilization to which emergency load balancing
attempts to bring all nodes. With that in mind, instead of
plotting the 99.9th percentile node utilization, we consider the
number of emergency load balance requests. Figures 9 and 10
show this metric. Note that since emergency load balancing can
be invoked after each object arrival, some nodes may require
multiple emergency load balances.

Finally, Figure 11 plots the load movement factor incurred by
emergency load balancing in this setting. Note that the amount
of load moved is much higher than the load of the impulse, but
having greater numbers of virtual servers helps significantly, in
part because it spreads the impulse over more physical nodes.

F. Node arrivals and departures

In this section, we consider the impact of the node arrival
and departure rates. The arrival rate is modeled by a Poisson
process, and the lifetime of a node is drawn from an exponential
distribution. We vary interarrival time between 10 and 90
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Fig. 4. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
numbers of directories.
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Fig. 5. 99.9th percentile node utilization vs. system utilization for
various numbers of virtual servers per node.

marked decrease in 99.9th percentile node utilization, as well as
a less pronounced increase in 99.9th percentile node utilization
as N grows.

E. Nonuniform object arrival patterns

In this section we consider nonuniform arrival patterns, in
both time and ID space.

We consider an “impulse” of objects whose IDs are dis-
tributed over a contiguous interval of the ID space, and whose
aggregate load represents 10% of the total load in the system.
We vary the spread of the interval between 10% and 100% of
the ID space. Thus, an impulse spread over 10% of the ID space
essentially produces a rapid doubling of load on that region of
the ID space, and hence a doubling of load on roughly 10% of
the virtual servers (but not on 10% of the nodes since nodes
have multiple virtual servers). The objects all arrive fast enough
that periodic load balancing does not have a chance to run, but
slow enough that emergency load balancing may be invoked for
each arriving object. These impulses not only create unequal
loading of objects in the ID space but also increase the overall
system utilization in the short term.
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Fig. 6. Load movement factor vs. system utilization for various
numbers of virtual servers per node.
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Fig. 7. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with homogeneous node
capacities.

Assuming the system state is such that our load balancer will
be able to make all nodes underloaded, the 99.9th percentile
node utilization will simply be slightly below 1.0, since this
is the level of utilization to which emergency load balancing
attempts to bring all nodes. With that in mind, instead of
plotting the 99.9th percentile node utilization, we consider the
number of emergency load balance requests. Figures 9 and 10
show this metric. Note that since emergency load balancing can
be invoked after each object arrival, some nodes may require
multiple emergency load balances.

Finally, Figure 11 plots the load movement factor incurred by
emergency load balancing in this setting. Note that the amount
of load moved is much higher than the load of the impulse, but
having greater numbers of virtual servers helps significantly, in
part because it spreads the impulse over more physical nodes.

F. Node arrivals and departures

In this section, we consider the impact of the node arrival
and departure rates. The arrival rate is modeled by a Poisson
process, and the lifetime of a node is drawn from an exponential
distribution. We vary interarrival time between 10 and 90
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Fig. 4. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
numbers of directories.
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Fig. 5. 99.9th percentile node utilization vs. system utilization for
various numbers of virtual servers per node.

marked decrease in 99.9th percentile node utilization, as well as
a less pronounced increase in 99.9th percentile node utilization
as N grows.

E. Nonuniform object arrival patterns

In this section we consider nonuniform arrival patterns, in
both time and ID space.

We consider an “impulse” of objects whose IDs are dis-
tributed over a contiguous interval of the ID space, and whose
aggregate load represents 10% of the total load in the system.
We vary the spread of the interval between 10% and 100% of
the ID space. Thus, an impulse spread over 10% of the ID space
essentially produces a rapid doubling of load on that region of
the ID space, and hence a doubling of load on roughly 10% of
the virtual servers (but not on 10% of the nodes since nodes
have multiple virtual servers). The objects all arrive fast enough
that periodic load balancing does not have a chance to run, but
slow enough that emergency load balancing may be invoked for
each arriving object. These impulses not only create unequal
loading of objects in the ID space but also increase the overall
system utilization in the short term.
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Fig. 6. Load movement factor vs. system utilization for various
numbers of virtual servers per node.
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Fig. 7. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with homogeneous node
capacities.

Assuming the system state is such that our load balancer will
be able to make all nodes underloaded, the 99.9th percentile
node utilization will simply be slightly below 1.0, since this
is the level of utilization to which emergency load balancing
attempts to bring all nodes. With that in mind, instead of
plotting the 99.9th percentile node utilization, we consider the
number of emergency load balance requests. Figures 9 and 10
show this metric. Note that since emergency load balancing can
be invoked after each object arrival, some nodes may require
multiple emergency load balances.

Finally, Figure 11 plots the load movement factor incurred by
emergency load balancing in this setting. Note that the amount
of load moved is much higher than the load of the impulse, but
having greater numbers of virtual servers helps significantly, in
part because it spreads the impulse over more physical nodes.

F. Node arrivals and departures

In this section, we consider the impact of the node arrival
and departure rates. The arrival rate is modeled by a Poisson
process, and the lifetime of a node is drawn from an exponential
distribution. We vary interarrival time between 10 and 90
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Fig. 4. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period T , for various
numbers of directories.
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Fig. 5. 99.9th percentile node utilization vs. system utilization for
various numbers of virtual servers per node.

marked decrease in 99.9th percentile node utilization, as well as
a less pronounced increase in 99.9th percentile node utilization
as N grows.

E. Nonuniform object arrival patterns

In this section we consider nonuniform arrival patterns, in
both time and ID space.

We consider an “impulse” of objects whose IDs are dis-
tributed over a contiguous interval of the ID space, and whose
aggregate load represents 10% of the total load in the system.
We vary the spread of the interval between 10% and 100% of
the ID space. Thus, an impulse spread over 10% of the ID space
essentially produces a rapid doubling of load on that region of
the ID space, and hence a doubling of load on roughly 10% of
the virtual servers (but not on 10% of the nodes since nodes
have multiple virtual servers). The objects all arrive fast enough
that periodic load balancing does not have a chance to run, but
slow enough that emergency load balancing may be invoked for
each arriving object. These impulses not only create unequal
loading of objects in the ID space but also increase the overall
system utilization in the short term.
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Fig. 6. Load movement factor vs. system utilization for various
numbers of virtual servers per node.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  100  1000  10000

99
.9

th
 P

er
ce

nt
ile

 N
od

e 
U

til
iz

at
io

n

Number of nodes in the system

Num VS = 2
= 4
= 8

= 12

Fig. 7. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with homogeneous node
capacities.

Assuming the system state is such that our load balancer will
be able to make all nodes underloaded, the 99.9th percentile
node utilization will simply be slightly below 1.0, since this
is the level of utilization to which emergency load balancing
attempts to bring all nodes. With that in mind, instead of
plotting the 99.9th percentile node utilization, we consider the
number of emergency load balance requests. Figures 9 and 10
show this metric. Note that since emergency load balancing can
be invoked after each object arrival, some nodes may require
multiple emergency load balances.

Finally, Figure 11 plots the load movement factor incurred by
emergency load balancing in this setting. Note that the amount
of load moved is much higher than the load of the impulse, but
having greater numbers of virtual servers helps significantly, in
part because it spreads the impulse over more physical nodes.

F. Node arrivals and departures

In this section, we consider the impact of the node arrival
and departure rates. The arrival rate is modeled by a Poisson
process, and the lifetime of a node is drawn from an exponential
distribution. We vary interarrival time between 10 and 90
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Uses homogeneous node capacities and number of virtual
servers

Grows in 99.9th percentile of nodes roughly linear in log N
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Fig. 8. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with heterogeneous node
capacities (default Pareto distribution).
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Fig. 9. Number of emergency actions taken vs. fraction of ID space
over which impulse occurs, for various initial system utilizations.

seconds. Since we fix the steady-state number of nodes in
the system to 4096, a node interarrival time of 10 seconds
corresponds to a node lifetime of about 11 hours.

To analyze the overhead of our load balancing algorithm
in this section we study the load moved by the algorithm as
a fraction of the load moved by the underlying DHT due to
node arrivals and departures. Figure 12 plots this metric as a
function of system utilization. The main point to take away is
that the load moved by our algorithm is considerably smaller
than the load moved by the underlying DHT especially for
small system utilizations. More precisely, with the default 12
virtual servers per node, our load balancing algorithm never
moves more than 60% of the load that is moved by the
underlying DHT.

Figure 13 corroborates the intuition that increasing the num-
ber of virtual servers decreases significantly the fraction of load
moved by our algorithm.

G. Object movement cost

Our load balancer attempts to remove the least amount of
load from a node so that the node’s utilization falls below a
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Fig. 10. PDF of number of emergency actions that a node takes after
an impulse of 10% of the system utilization concentrated in 10% of
the ID space, at an initial system utilization of 0.8.
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Fig. 11. Load movement factor vs. system utilization after an impulse
in 10% of the ID space.

given threshold. Under the assumption that an object’s move-
ment cost is proportional to its load, the balancer therefore
also attempts to minimize total movement cost. But while that
assumption holds if storage is the bottleneck resource, it might
not be true in the case of bandwidth: small, easily moved
objects could be extremely popular.

To study how our algorithm performs in such cases, we con-
sider two scenarios which differ in how an object’s movement
cost mi and its load !i are related: (1) !i = mi, and (2) !i

and mi are chosen independently at random from our default
object load distribution. We use 250, 000 objects, fewer than
our default so a virtual server will have greater variation in
total load movement cost.

Figure 14 shows that when !i and mi are independent, the
load moved is only marginally higher than in the case where
they are identical. The principal cause of this is that, since the
balancer is oblivious to movement cost and movement cost is
independent of load, the amortized cost of its movements will
simply be the expected movement cost of an object, which we
have fixed to be equal in the two cases.

An algorithm which pays particular attention to movement
cost could potentially perform somewhat better than ours in
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Uses heterogeneous capacity distribution

Achieves remarkable decrease in 99.9th percentile node
utilization with growth in N

B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, I. StoicaLoad Balancing in Dynamic Structured P2P System November 19, 2013 21 / 30



Empirical Evaluation

Node Arrivals and Departures
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Fig. 12. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. system utilization, for various node interarrival
times.
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Fig. 13. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. number of virtual servers, for various rates of
node arrival.

this environment by preferring to move virtual servers with
high load and low movement cost when possible.

VI. FUTURE WORK

A number of potential improvements to our algorithm and
generalizations of our model deserve further study.

Prediction of change in load. Our load balancing algorithms
consider only load on a virtual server, ignoring the volume it
is assigned in the ID space. Since volume is often closely cor-
related with rate of object arrival, we could reduce the chance
that a node’s load increases significantly between periodic load
balances by avoiding the assignment of virtual servers with light
load but large volume to nodes with little unused capacity. This
suggests a predictive scheme which balances load based on, for
example, a probabilistic upper bound on the future load of a
virtual server.

Balance of multiple resources. In this paper we have
assumed that there is only one bottleneck resource. However, a
system may be constrained, for example, in both bandwidth and
storage. This would be modeled by associating a load vector
with each object, rather than a single scalar value. The load
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Fig. 14. Load movement factor vs. system utilization for various
choices of distributions of object load and object movement cost.

balancing algorithm run at our directories would have to be
modified to handle this generalization, although our underlying
directory-based approach should remain effective.

Beneficial effect of heterogeneous capacities. As shown in
Section V-D, having nonuniform node capacities allows us to
use fewer virtual servers per node than in the equal-capacity
case. It would be interesting to more precisely quantify the
impact of the degree of heterogeneity on the number of virtual
servers needed to balance load.

VII. RELATED WORK

Most structured P2P systems ([1], [2], [3], [4]) assume that
object IDs are uniformly distributed. Under this assumption, the
number of objects per node varies within a factor of O(log N),
where N is the number of nodes in the system. CAN [1]
improves this factor by considering a subset of existing nodes
(i.e., a node along with neighbors) instead of a single node
when deciding what portion of the ID space to allocate to a new
node. Chord [2] was the first to propose the notion of virtual
servers as a means of improving load balance. By allocating
log N virtual servers per physical node, Chord ensures that with
high probability the number of objects on any node is within a
constant factor of the average. However, these schemes assume
that nodes are homogeneous, objects have the same size, and
object IDs are uniformly distributed.

CFS [7] accounts for node heterogeneity by allocating to
each node some number of virtual servers proportional to the
node capacity. In addition, CFS proposes a simple solution
to shed the load from an overloaded node by having the
overloaded node remove some of its virtual servers. However,
this scheme may result in thrashing as removing some virtual
servers from an overloaded node may result in another node
becoming overloaded.

Byers et. al. [6] have proposed the use of the “power of two
choices” paradigm to achieve better load balance. Each object is
hashed to d ≥ 2 different IDs, and is placed in the least loaded
node v of the nodes responsible for those IDs. The other nodes
are given a redirection pointer to v so that searching is not
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Load moved by the load balancer as a fraction of the load moved
by DHT vs. system utilization

For the default 12 virtual servers per node, the algorithm never
moves more than 60% of the load compared to DHT.
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Fig. 12. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. system utilization, for various node interarrival
times.
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Fig. 13. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. number of virtual servers, for various rates of
node arrival.

this environment by preferring to move virtual servers with
high load and low movement cost when possible.

VI. FUTURE WORK

A number of potential improvements to our algorithm and
generalizations of our model deserve further study.

Prediction of change in load. Our load balancing algorithms
consider only load on a virtual server, ignoring the volume it
is assigned in the ID space. Since volume is often closely cor-
related with rate of object arrival, we could reduce the chance
that a node’s load increases significantly between periodic load
balances by avoiding the assignment of virtual servers with light
load but large volume to nodes with little unused capacity. This
suggests a predictive scheme which balances load based on, for
example, a probabilistic upper bound on the future load of a
virtual server.

Balance of multiple resources. In this paper we have
assumed that there is only one bottleneck resource. However, a
system may be constrained, for example, in both bandwidth and
storage. This would be modeled by associating a load vector
with each object, rather than a single scalar value. The load
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Fig. 14. Load movement factor vs. system utilization for various
choices of distributions of object load and object movement cost.

balancing algorithm run at our directories would have to be
modified to handle this generalization, although our underlying
directory-based approach should remain effective.

Beneficial effect of heterogeneous capacities. As shown in
Section V-D, having nonuniform node capacities allows us to
use fewer virtual servers per node than in the equal-capacity
case. It would be interesting to more precisely quantify the
impact of the degree of heterogeneity on the number of virtual
servers needed to balance load.

VII. RELATED WORK

Most structured P2P systems ([1], [2], [3], [4]) assume that
object IDs are uniformly distributed. Under this assumption, the
number of objects per node varies within a factor of O(log N),
where N is the number of nodes in the system. CAN [1]
improves this factor by considering a subset of existing nodes
(i.e., a node along with neighbors) instead of a single node
when deciding what portion of the ID space to allocate to a new
node. Chord [2] was the first to propose the notion of virtual
servers as a means of improving load balance. By allocating
log N virtual servers per physical node, Chord ensures that with
high probability the number of objects on any node is within a
constant factor of the average. However, these schemes assume
that nodes are homogeneous, objects have the same size, and
object IDs are uniformly distributed.

CFS [7] accounts for node heterogeneity by allocating to
each node some number of virtual servers proportional to the
node capacity. In addition, CFS proposes a simple solution
to shed the load from an overloaded node by having the
overloaded node remove some of its virtual servers. However,
this scheme may result in thrashing as removing some virtual
servers from an overloaded node may result in another node
becoming overloaded.

Byers et. al. [6] have proposed the use of the “power of two
choices” paradigm to achieve better load balance. Each object is
hashed to d ≥ 2 different IDs, and is placed in the least loaded
node v of the nodes responsible for those IDs. The other nodes
are given a redirection pointer to v so that searching is not
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Load moved by the load balancer as a fraction of the load moved
by the DHT vs. number of virtual servers
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Fig. 12. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. system utilization, for various node interarrival
times.
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moved by the DHT vs. number of virtual servers, for various rates of
node arrival.

this environment by preferring to move virtual servers with
high load and low movement cost when possible.

VI. FUTURE WORK

A number of potential improvements to our algorithm and
generalizations of our model deserve further study.

Prediction of change in load. Our load balancing algorithms
consider only load on a virtual server, ignoring the volume it
is assigned in the ID space. Since volume is often closely cor-
related with rate of object arrival, we could reduce the chance
that a node’s load increases significantly between periodic load
balances by avoiding the assignment of virtual servers with light
load but large volume to nodes with little unused capacity. This
suggests a predictive scheme which balances load based on, for
example, a probabilistic upper bound on the future load of a
virtual server.

Balance of multiple resources. In this paper we have
assumed that there is only one bottleneck resource. However, a
system may be constrained, for example, in both bandwidth and
storage. This would be modeled by associating a load vector
with each object, rather than a single scalar value. The load
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Fig. 14. Load movement factor vs. system utilization for various
choices of distributions of object load and object movement cost.

balancing algorithm run at our directories would have to be
modified to handle this generalization, although our underlying
directory-based approach should remain effective.

Beneficial effect of heterogeneous capacities. As shown in
Section V-D, having nonuniform node capacities allows us to
use fewer virtual servers per node than in the equal-capacity
case. It would be interesting to more precisely quantify the
impact of the degree of heterogeneity on the number of virtual
servers needed to balance load.

VII. RELATED WORK

Most structured P2P systems ([1], [2], [3], [4]) assume that
object IDs are uniformly distributed. Under this assumption, the
number of objects per node varies within a factor of O(log N),
where N is the number of nodes in the system. CAN [1]
improves this factor by considering a subset of existing nodes
(i.e., a node along with neighbors) instead of a single node
when deciding what portion of the ID space to allocate to a new
node. Chord [2] was the first to propose the notion of virtual
servers as a means of improving load balance. By allocating
log N virtual servers per physical node, Chord ensures that with
high probability the number of objects on any node is within a
constant factor of the average. However, these schemes assume
that nodes are homogeneous, objects have the same size, and
object IDs are uniformly distributed.

CFS [7] accounts for node heterogeneity by allocating to
each node some number of virtual servers proportional to the
node capacity. In addition, CFS proposes a simple solution
to shed the load from an overloaded node by having the
overloaded node remove some of its virtual servers. However,
this scheme may result in thrashing as removing some virtual
servers from an overloaded node may result in another node
becoming overloaded.

Byers et. al. [6] have proposed the use of the “power of two
choices” paradigm to achieve better load balance. Each object is
hashed to d ≥ 2 different IDs, and is placed in the least loaded
node v of the nodes responsible for those IDs. The other nodes
are given a redirection pointer to v so that searching is not
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Load movement factor vs. system utilization for two cases of
object load and object movement cost
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Non-uniform Object Arrival Patterns
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Fig. 8. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with heterogeneous node
capacities (default Pareto distribution).
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Fig. 9. Number of emergency actions taken vs. fraction of ID space
over which impulse occurs, for various initial system utilizations.

seconds. Since we fix the steady-state number of nodes in
the system to 4096, a node interarrival time of 10 seconds
corresponds to a node lifetime of about 11 hours.

To analyze the overhead of our load balancing algorithm
in this section we study the load moved by the algorithm as
a fraction of the load moved by the underlying DHT due to
node arrivals and departures. Figure 12 plots this metric as a
function of system utilization. The main point to take away is
that the load moved by our algorithm is considerably smaller
than the load moved by the underlying DHT especially for
small system utilizations. More precisely, with the default 12
virtual servers per node, our load balancing algorithm never
moves more than 60% of the load that is moved by the
underlying DHT.

Figure 13 corroborates the intuition that increasing the num-
ber of virtual servers decreases significantly the fraction of load
moved by our algorithm.

G. Object movement cost

Our load balancer attempts to remove the least amount of
load from a node so that the node’s utilization falls below a
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Fig. 10. PDF of number of emergency actions that a node takes after
an impulse of 10% of the system utilization concentrated in 10% of
the ID space, at an initial system utilization of 0.8.
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Fig. 11. Load movement factor vs. system utilization after an impulse
in 10% of the ID space.

given threshold. Under the assumption that an object’s move-
ment cost is proportional to its load, the balancer therefore
also attempts to minimize total movement cost. But while that
assumption holds if storage is the bottleneck resource, it might
not be true in the case of bandwidth: small, easily moved
objects could be extremely popular.

To study how our algorithm performs in such cases, we con-
sider two scenarios which differ in how an object’s movement
cost mi and its load !i are related: (1) !i = mi, and (2) !i

and mi are chosen independently at random from our default
object load distribution. We use 250, 000 objects, fewer than
our default so a virtual server will have greater variation in
total load movement cost.

Figure 14 shows that when !i and mi are independent, the
load moved is only marginally higher than in the case where
they are identical. The principal cause of this is that, since the
balancer is oblivious to movement cost and movement cost is
independent of load, the amortized cost of its movements will
simply be the expected movement cost of an object, which we
have fixed to be equal in the two cases.

An algorithm which pays particular attention to movement
cost could potentially perform somewhat better than ours in
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“Impulse” refers to objects in a contiguous interval in the ID
space with aggregate load equalling 10% of total system load

Objects arrival is tuned so that periodic load balancing does not
run while emergency load balancing may be invoked
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Fig. 8. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with heterogeneous node
capacities (default Pareto distribution).
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over which impulse occurs, for various initial system utilizations.

seconds. Since we fix the steady-state number of nodes in
the system to 4096, a node interarrival time of 10 seconds
corresponds to a node lifetime of about 11 hours.

To analyze the overhead of our load balancing algorithm
in this section we study the load moved by the algorithm as
a fraction of the load moved by the underlying DHT due to
node arrivals and departures. Figure 12 plots this metric as a
function of system utilization. The main point to take away is
that the load moved by our algorithm is considerably smaller
than the load moved by the underlying DHT especially for
small system utilizations. More precisely, with the default 12
virtual servers per node, our load balancing algorithm never
moves more than 60% of the load that is moved by the
underlying DHT.

Figure 13 corroborates the intuition that increasing the num-
ber of virtual servers decreases significantly the fraction of load
moved by our algorithm.

G. Object movement cost

Our load balancer attempts to remove the least amount of
load from a node so that the node’s utilization falls below a
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Fig. 10. PDF of number of emergency actions that a node takes after
an impulse of 10% of the system utilization concentrated in 10% of
the ID space, at an initial system utilization of 0.8.
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Fig. 11. Load movement factor vs. system utilization after an impulse
in 10% of the ID space.

given threshold. Under the assumption that an object’s move-
ment cost is proportional to its load, the balancer therefore
also attempts to minimize total movement cost. But while that
assumption holds if storage is the bottleneck resource, it might
not be true in the case of bandwidth: small, easily moved
objects could be extremely popular.

To study how our algorithm performs in such cases, we con-
sider two scenarios which differ in how an object’s movement
cost mi and its load !i are related: (1) !i = mi, and (2) !i

and mi are chosen independently at random from our default
object load distribution. We use 250, 000 objects, fewer than
our default so a virtual server will have greater variation in
total load movement cost.

Figure 14 shows that when !i and mi are independent, the
load moved is only marginally higher than in the case where
they are identical. The principal cause of this is that, since the
balancer is oblivious to movement cost and movement cost is
independent of load, the amortized cost of its movements will
simply be the expected movement cost of an object, which we
have fixed to be equal in the two cases.

An algorithm which pays particular attention to movement
cost could potentially perform somewhat better than ours in
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PDF of number of emergency actions taken after an impulse of
10% concentrated in 10% of the ID space
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Fig. 8. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with heterogeneous node
capacities (default Pareto distribution).
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seconds. Since we fix the steady-state number of nodes in
the system to 4096, a node interarrival time of 10 seconds
corresponds to a node lifetime of about 11 hours.

To analyze the overhead of our load balancing algorithm
in this section we study the load moved by the algorithm as
a fraction of the load moved by the underlying DHT due to
node arrivals and departures. Figure 12 plots this metric as a
function of system utilization. The main point to take away is
that the load moved by our algorithm is considerably smaller
than the load moved by the underlying DHT especially for
small system utilizations. More precisely, with the default 12
virtual servers per node, our load balancing algorithm never
moves more than 60% of the load that is moved by the
underlying DHT.

Figure 13 corroborates the intuition that increasing the num-
ber of virtual servers decreases significantly the fraction of load
moved by our algorithm.

G. Object movement cost

Our load balancer attempts to remove the least amount of
load from a node so that the node’s utilization falls below a
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Fig. 10. PDF of number of emergency actions that a node takes after
an impulse of 10% of the system utilization concentrated in 10% of
the ID space, at an initial system utilization of 0.8.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85

Lo
ad

 M
ov

em
en

t F
ac

to
r

System Utilization

Num VS = 4
= 8

= 12

Fig. 11. Load movement factor vs. system utilization after an impulse
in 10% of the ID space.

given threshold. Under the assumption that an object’s move-
ment cost is proportional to its load, the balancer therefore
also attempts to minimize total movement cost. But while that
assumption holds if storage is the bottleneck resource, it might
not be true in the case of bandwidth: small, easily moved
objects could be extremely popular.

To study how our algorithm performs in such cases, we con-
sider two scenarios which differ in how an object’s movement
cost mi and its load !i are related: (1) !i = mi, and (2) !i

and mi are chosen independently at random from our default
object load distribution. We use 250, 000 objects, fewer than
our default so a virtual server will have greater variation in
total load movement cost.

Figure 14 shows that when !i and mi are independent, the
load moved is only marginally higher than in the case where
they are identical. The principal cause of this is that, since the
balancer is oblivious to movement cost and movement cost is
independent of load, the amortized cost of its movements will
simply be the expected movement cost of an object, which we
have fixed to be equal in the two cases.

An algorithm which pays particular attention to movement
cost could potentially perform somewhat better than ours in
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Load movement factor vs. system utilization after an impulse in
10% of the ID space
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Conclusion

Conclusion

Proposed a load balancing algorithm for dynamic,
heterogeneous P2P systems

Heterogeneity implies varying –
I object loads
I node capacity
I continuous insertion and deletion of objects
I skewed object arrival patterns
I continuous arrival/departure of nodes

Achieves load balancing for system utilizations of 90% while
moving only 8% of the arriving load

Moves less than 60% of the load the underlying DHT moves for
node arrivals and departures

Heterogeneity can help improving scalability
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Discussion

Discussion

1 Why are the times at which the nodes report to the directories
not synchronized?

2 Glich in technical presentation in the “Load Balancing Algorithm”
section!

3 How about reporting Directory utilization in Node(T, ke)

4 Possible usage of Kalman Filters?
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THANK YOU!
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